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ABSTRACT

The Naval Space Surveillance Command (NAVSPASUR) has been in

existence since the late 1950's. Operating with a formidable array of three

large transmitters and six receiving stations, the command has carried out

the mission of surveilling and cataloging all space objects in near earth orbit.

To date, over 21,000 artificial satellites have been tracked and catalogued by

the command. In order to document how effectively the fence has been

accomplishing this mission, this thesis has been undertaken to provide

NAVSPASUR with a statistics based measure of demonstrated system

detection performance.

It is the purpose of this thesis to provide NAVSPASUR with a scientific

study and evaluation of system performance and capabilities as demonstrated

in recent operational periods. Following a discussion and review of

NAVSPASUR operating parameters, a statistical analysis of system

performance will be presented. This analysis will consist of data regressions

performed by the GRAFSTAT and SAS programs imbedded in the Naval

Postgraduate School mainframe computer. The final result of this effort will

be to provide NAVSPASUR with an independently derived, statistically

based means to predict future probabilities of success in detecting satellites of

known radar cross section in operational orbits.
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I. INTRODUCTION

The NAVSPASUR radar fence was built in 1958. It has since tracked over

21,000 space objects, over 6000 of which are in orbit today. The reason for

existence and basic operating principles of the fence are best summarized in a

paragraph taken from a study completed by Dr. S. H. Knowles of

NAVSPASUR, Dahlgren, VA. [Ref. 5] In it he states:

Tracking and acquisition of artificial satellites that cooperate by

transponding is a well-proven technique with many practitioners,, However,

for defense purposes it is of great value to be able to detect and determine an

orbit for satellites with no cooperation or pre-information required. This

important task is accomplished for our country, not by the large X-band

parabolas usually associated with tracking, but by a radio fence of 217 MHz

radiation located across the southern part of our country and operated by the

U. S. Navy as the Naval Space Surveillance Command (NAVSPASUR). The

NAVSPASUR system, unlike conventional tracking radars, uses sets of

dipoles in an interferometer array to derive directly the angular position of

each satellite that passes through the fence. Because of the laws of orbital

mechanics, all satellites in 'parking' (i.e. thrustless) orbits that pass over

CONUS must eventually pass through the NAVSPASUR fence and are

detected with no requirement of pre-targeting or cooperation. This

NAVSPASUR radar-interferometer system has remained essentially

unaitered in concept for many years and has served as a mainstay of our

country's satellite surveillance system.
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Throughout its thirty plus years of operation, NAVSPASUR fence

operators have lacked a formal, statistically proven measure of system

effectiveness. Specifically, a study of demonstrated system capability to detect

satellites of known radar cross section at certain operational altitudes is

needed. It is the intention of the author to provide NAVSPASUR with

information about detection performance and a model to predict system

effectiveness in most operational regimes of interest.

The Chapter II herein deals with the background of the NAVSPASUR

fence. An overall description of the fence is given and its associated radar

properties are examined. Also, the logic tree under which the system collects

data and its ramifications in terms of demonstrated system detection

performance are discussed.

Chapter III presents the statistical analysis procedures applied to actual

NAVSPASUR data in order to estimate probability of detection models. An

overview of the data used as well as a discussion of dependent and

independent variables as related to a final probability model are presented. It

is hoped this will provide the statistically unindoctrinated reader with an

appreciation for the method of estimating the probabilities of detection of

future space platforms of interest.

Chapter IV is dedicated to exploratory data analysis performed in large

part with the use of the GRAFSTAT program. The characteristics of the

NAVSPASUR data set are examined closely in order to provide a basis for

developing a more accurate model later in the thesis. While the exploratory

data analyses do not provide exact probability of detection models, the

2



graphical summaries presented show definite and informative trends in the

data, which should be of interest to NAVSPASUR operators.

The Chapter V presents results of statistical analyses and modeling efforts

performed with the SAS program. Individual parameters are estimated in a

logistic regression model using our observed satellite data. The analyses were

performed to relate detections and non-detections with independent

variables, such as inclination, altitude, and RCS, in such a manner as to

provide an accurate probability of detection model for many different

detection regimes.

Chapter VI provides a summary of the results, as well as an indication of

possible areas for continued study.
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II. BACKGROUND

A. DESCRIPTION OF THE RADAR FENCE

The present NAVSPASUR transmitting system consists of three separate

transmitters positioned on a great circle across the southern United States.

The transmitting antenna at each site consists of a linear array of dipole

elements aligned in a north-south direction. Each site transmits an

unmodulated continuous-wave signal at a frequency (f) of 216.980 MHz,

corresponding to a wavelength (W) of 1.38 meters.

The 810 kW transmitter at Lake Kickapoo, Texas is the most powerful and

the longest, consisting of eighteen separate collinear bays stretching 3200 m in

the north-south direction. Each bay contains 144 elements spaced 1.27 m (0.92

%) apart, except for bay #8 (numbering from north to south), which is split up

by a road and consists of two half bays with 54 elements each. The end

elements of adjacent bays are separated by 3.81 m. The distance between the

elements at the road gap is 73.2 m. The Kickapoo transmitter is referred to as

the Kickapoo complex, since it is created from two smaller nine-bay

transmitters called North Kickapoo and South Kickapoo. Each half can be

operated as an individual transmitter antenna.

The Gila River, Arizona and the Jordan Lake, Alabama transmitters each

supply 45kW of power to single bay antenna arrays. The Gila River

transmitter has 384 elements spaced 1.30 m (0.94 X) apart, while the Jordan

Lake transmitter has 256 elements spaced 1.22 m (0.88 X) apart.[Ref. 3]
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A series of six large antenna arrays comprise the receiver segment of the

fence. These units, their locations, and specific characteristics are shown in

Table 1 [Ref. 8].

TABLE 1. NAVSPASUR RECEIVING STATION ARRAY DIMENSIONS

Name/Location No. Arrays/Length (ft) Alert Antenna(ft)

San Diego, CA 12/400 1600

Elephant Butte, NM 22/ 1200 Dual 4800

Red River, AR 12 / 400 1600

Silver Lake, MS 12/400 1600

Hawkinsville, GA 22/1200 Dual 4800

Fort Stewart, GA 12/400 1600

This group of transmitters and receivers comprise the hardware elements

of the NAVSPASUR fence. By combining the gains inherent in very large

antennas with the coverage of wide geographic regions, the fence is able to

provide extraordinary surveillance of space objects crossing continental

United States territory. The relative spacing of these antennas is shown in

Figure 1 [Ref. 2].

B. RADAR THEORY

The NAVSPASUR fence can be most easily visualized as a fan of

electromagnetic energy similar in geometry to that depicted in Figure 2. In

reality, this system merely represents the confluence of the individual

transmitting and receiving stations. It is, therefore, beneficial to examine a

single station. As an example, consider Kickapoo to be the transmitter and

San Diego to be the receiver.
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Figure 1. Locations of NAVSPASUR Transmitter and Receiver Sites

A recent study of fence radiation properties completed by Mr. Guy H.

Chaney examined the theoretical limitations of the Kickapoo transmitting

station [Ref. 3]. While many assumptions were made for ease of calculation,

the basic constants and link calculations used were all consistent with

accepted radio theory. The largest area of uncertainty in the calculations

appears to be in the determination of a consistent gain value for the antennas.

With this limitation in mind, a modified version of Chaney's work will be

presented in order to demonstrate system theoretical range.

The applicable specifications of the NAVSPASUR fence are as follows:

let, k = Boltzman's constant = 1.38E-23

Fn = Receiver noise figure = 1.58 dbW(assumed constant for fence)

Tr = Receiver Noise Temperature = To(Fn-1) = 290K(1.58-1)

Tsky = Sky noise temperature = (assumed 100K)
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Figure 2. Depiction of Fence Energy Field as Seen from Space

B =Receiver Bandwidth = 36.6 Hz (low altitude reception)

Pt= Transmitter power = 766.8 kW (number varies slightly per reference)

N = receiver noise power = k(Tr + Tsky)B = -188.7 dbW

Nt= Number of dipoles in transmitting antenna 2556
I Olog(2*N ti*3

Gt = Transmitter gain = 3 + -log[2] = 40db =10000

Nr = Number of dipoles in receiving antenna = 96

Gr = Rece;-vcr gain = 3 + 10og[2*Nl3 = 25 db = 316

w = Pence operating wavelength = 1.38 nm = 4.528 ft
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RCS = Radar cross section of target satellite in square meters

Pr = Power required at the receiver for 7 dB signal to noise ratio = N +

S/N = -188.7 dbW + 7dB = -181.7 dbW = 6.76E-19

losses = 2 dB (due to antenna, coupling and atmosphere) = 1.58

Conversion factor (meters to nautical miles) = .0005468

R = Maximum theoretical range (nm)

For the maximum theoretical range equation, Chaney used the form:

R4 = (Pt)(G)(Gr)(w 2)(RCS)
[(4)(n)]3 (Pr)(losses) (.0005468)

The resultant equation obtained when the values shown above are

entered is given by:

R = (RCS)-25(3687).

A plot of maximum range for a range of values of RCS is shown in

Figure 3.

C. DATA COLLECTION

Some reduction in the volume of observational data is inherent in the

computer processing of NAVSPASUR data. 1he logic flow chart in Figure 4

illustrates the requirements for a successful observation to be recorded.

As can be seen in Figure 4, there are several data "pigeon holes" into

which some received data may fall and thus be excluded from the useable

database. These are due to imbedded software constraints designed to weed

8



out noisy or extraneous signals. One example of data rejection is that of a

satellite being illuminated by a transmitter at less than 6 degrees above the

hoAzon. Due to ground clutter and receiver interference problems, this

region has been excluded from the acceptable observation category. Bad

resolution of a crossing target will also suspend an observation. This

phenomenon, which may occur for a number of reasons, including poor

dopple'r resolution, timing or cosine errors, results when the computer fails

to match a definite radar signature. A final data sink is due to buffer

overflow. The buffer holds information that awaits CPU processing, and

occasional information loss occurs when storage capacity is exceeded. [Ref. 111

20000

15000

Range (nautical 10000
miles)

5000

0
0 10 20 30 40 50

Radar Cross section (square meters)

Figure 3. Maximum Theoretical Ranges as a Function of Radar Cross Section
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Figure 4. Logic Flow for NAVSPASUR Received Data

These limitations to the current NAVSPASUR system are certainly

relevant and contribute in a nontrivial fashion to the loss of received data.

They are discussed here only to provide background as to why the fence

system records a less than perfect detection rate. The accurate estimation of

the level of fence detection performance is the goal of this thesis effort.
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IHL THE MODEL

A. OVERVIEW

The NAVSPASUR fence and its associated data collection elements

constitute a system that lends itself to statistical analysis. The voluminous

quantity of orbit prediction and observation data, exceeding 37,000 events per

day, provide a significant base from which system performance may be

analyzed in terms of relevant parameters. For example, in light of the total

number of observations available, it is possible to examine system

performance with regards to specific satellite radar cross section values or

categories. As an example, system performance against a group of small

satellites (approximately 1 square meter RCS) is analyzed below. Other

primary variables of concern in the estimation of system detection

performance are altitude and longitude at time of detection, and inclination

of the satellite orbits. In our analyses of these data, two statistical and

graphics packages were employed.

The SAS (Statistical Analysis System) package was used to examine the

effects of several parameters on system performance. The SAS procedure

LOGIST was used to perform logistic regression. The object of logistic

regression is to fit models for Bernoulli (detect/no detect) data. A review of

logistic regression follows in the next section. The primary output of the SAS

procedure LOGIST is a model giving predicted probability of satellite detection

for any combination of crossing satellite parameter values. The GRAFSTAT

package was also used in this research in order to provide comparisons with

11



SAS calculations, and to provide visually descriptive three dimensional

graphics. Professor Peter Lewis of the NPS Operations Researclh Department

wrote specific routines allowing GRAFSTAT to perform weighted regression

with logit transformed relative frequencies. This gives statistical results

similar to those from the SAS program, but for restricted paran'eter sets.

GRAFSTAT provides superb graphics functions. These graphics provide

concise summaries of system performance. In what follows we review the

statistical basis of the analysis we performed.

B. LOGISTIC REGRESSION

A magnetic computer tape received from Mr. Robin Smith of

NAVSPASUR contained all satellite prediction and observation data for 24

April 1991. Each of the 37,181 records in the tape consist of thirteen specific

fields, The first seven of these fields include time, catalogue number, radar

cross section, eccentricity, inclination, altitude, and longitude of a satellite

when crossing the fence. The final six columns are the indications of

successful or unsuccessful detection for each NAVSPASUR receiving station.

If a station indicates a zero for a given satellite pass, the satellite was out of the

station's line of sight and should not count as a receiver success or failure.

(This indication will obviously be excluded from the analysis.) On the other

hand, a one indicated by the station means a satellite should have been in

view of the station, but was not detected. This should be regarded as a

receiver failure. Finally, if a given station indicates a two or greater (there is

some variability in this value due to time spent within the energy field), the

station has successfully detected the predicted satellite pass. Given this

Bernoulli (success or no success) type of response data, logistic regression is a

12



good candidate procedure for arriving at a probability of success (detection)

model.

Logistic regression, like most model building techniques used in statistics,

has the simple goal of finding the best fitting and most parsimonious, yet

physically reasonable model to describe the relationship between an outcome

(dependent variable) and a set of explanatory (independent) variables. The

independent variables are frequently called covariates. What differentiates

logistic regression from normal linear regression modeling is that the

outcome variable in logistic regression is binary (success/failure). This

difference between logistic and linear regression is reflected both in the choice

of a parametric model and in the assumptions. Aside from this difference,

the methods employed in an analysis using logistic regression follow the

same general principles used in linear regression. [Ref. 51

For the sake of clarity, linear regression may be briefly described as

follows. Suppose there is a relationship between two variables, such that a

linear association is suspected. More variables may exist, as is the case with

this study. However, for simplicity, we will discuss only the single variable

case. This relationship could be described by the equation:

a + bx = y + error

In an environment where y is a continuous dependent variable, many

experimental results could be compiled to estimate a and b, providing the best

fit for the given relationship. This technique of curve fitting, known as linear

regression, can be extended to multivariate and nonlinear relationships.[Ref.

5] It is not appropriate, however, for fitting models where the dependent

13



variable is binary, as is the case with the NAVSPASUR detect/no detect

response variable.

As mentioned previously, two major differences exist between linear

regression and logistic regression. The first difference concerns the nature of

the relationship between the dependent and independent variables. In a

regression problem the key quantity is the mean (expected) value of the

dependent variable, given the values of the independent variables. This

quantity is known as the conditional mean and can be expressed "E(Y/x)"

where Y is the dependent variable and x denotes the value of the

independent variables. E(Y/x) can be stated in English as "the expected value

of Y, given the value of x." In the case of linear regression, where E(Y/x) can

take on any real value as x ranges over some Euclidean space, we can describe

this relationship simply by the equation [Ref. 5]:

E(Y/x) = 0 + Jix

For predicting probabilities, however, E(Y/x) should always be equal to or

greater than 0 and less than or equal to 1. In the NAVSPASUR data set,

where the outcome variable is dichotomous, a plot of E(Y/x) would be S-

shaped when plotted against x, resembling a cumulative distribution of the

independent variables. In other words, as the conditional mean approaches 0

or 1, the change in E(Y/x) per-unit change in independent variables becomes

progressively smaller. The precise shape of this S-curve is determined by the

relationship of independent variables to the outcome variable. Given this

particular modeling environment, it would possible to select from several

well known functions in order to attain an acceptable linearizing

14



transformation of E(Y/x). The logit transformation is chosen because: (1) it is

an extremely flexible and easily used function from a mathematical point of

view, and (2) it lends itself to physically meaningful interpretation.

As stated previously, the first difference between logistic regression and

linear regressi3n is that the dependent and independent variables are related

differently. This difference is reflected in the basic form of the logistic

regression equation:

M(x) = E(Y/x) - exp(P3O+131x)
1 + exp(030+031x)

where n(x) can be interpreted as the probability that y equals 1, given x.

Using the logit transformation on n(x), defined by

g(x) [1

it easily follows that

g(x) =30 + OIx.

As can be seen, the logit transformed probabilities of detection, n(x), may

have the desirable properties of the linear regression model, and may be

continuous, depending on the domain of g. Logistic regression uses the

mathematical properties of the above exponential relationship to provide an

estimator for the expected values, E(Y/x). Reference 5 contains a thorough

explanation of the statistical assumptions in logistic regression. It states:

15



The second difference between the linear regression and logistic
regression models concerns the conditional distribution of the
dependent variable. In the linear regression model it is assumed that an
observation of the dependent variable may be expressed as:

y = E(Y/x) + e

The quantity e is called the error and expresses an observation's deviation

from the conditional mean. The most common assumption is that e follows

a normal distribution with mean zero and some variance that is consistent

across levels of the independent variable. It follows that the conditional

distribution of the dependent variable given x will be normal with mean

E(Y/x), and a variance that is constant. This is not the case with a

dichotomous outcome variable. In this situation we may express the value of

the outcome variable given x as y = M(x) + e. Here the quantity e may assume

one of two possible values. If y = I then e = I - x(x) with probability ir(x), and if

y = 0 then e = -nt(x) with probability I - M(x). Thus, e has a distribution with

mean zero and variance equal to n(x)[1 - ic(x)]. That is, the conditional

distribution of the outcome variable follows a binomial distribution with

probability given by the conditional mean, n(x).

A summary of properties of the logistic regression model, which we

believe are appropriate for the NAVSPASUR performance study is:

"* The conditional mean of the observed response variable must be
formulated to be bounded between zero and one;

"* The binomial distribution describes the distribution of the errors and
is the statistical distribution upon which the analysis is based; and

"* The principles that guide an analysis using linear regression apply in
logistic regression.

16



C. SIGNIFICANCE OF THE MODEL

The SAS package, like many other well known software packages,

provides the user an assessment of the quality of the proposed model. A

primary aspect of this testing is the determination of whether the

independent variables in the model are "significantly" related to the

outcome variable. In other words, does the model that includes the

variable(s) in question tell us more about the outcome variable than does a

model that does not include that (those) variable(s)? Reference 5 provides an

answer to this question, stating:

The observed values of the response variable predicted by each of two
different models are compared; the first with and the second without
the variable in question. The mathematical function used to compare
the observed and predicted values depends on the particular problem. If
the predicted values with the variable in the model are better, or more
accurate in some sense, than when the variable is not in the model, then
we feel that the variable in question is "significant".

The SAS program tests for such significance through the following

procedure. The log likelihood equation for the observed outcome with

parameters in the vector 13 in the model is generated [Ref. 5]:

L(P) = E{yiln[n(xi)] + (1 - yi)ln[1 - 7(xi)]}

As can be seen, for independent variable combinations where yi = 1 the

contribution to the log likelihood function is log[n(xi)], and where yi = 0 the

contribution is In[1 - 7r(xi)]. SAS uses an iterative numerical algorithm to find

a value of 0 for each independent variable that maximizes L(UP) for the data set

where i ranges from 1 to total sample size, 37,181 in our case. The given

variables are examined using the equation:

17



21 (likelihood without the variable)
G = -21n( (likelihood with the variable)

The p-value corresponding to this test statistic, G, is determined with a

chi-square (X2) distribution with a certain number of degrees of freedom. If

this p-value is relatively small, we have convincing evidence that the

variable in question is significant.[Ref. 7] That is, the null hypothesis that the

corresponding coefficient is zero should be rejected. This testing was carried

out for each candidate independent variable in our model.

18



IV. EXPLORATORY ANALYSIS

A. INITIAL DATA EXPLORATION

Before undertaking full scale logistic regression analysis with the

NAVSPASUR database we examined some general trends of the data.

Knowing the ranges of parameters under which the majority of predictions

and observations fall is a useful input to more concise modelling. The

Grafstat package was used to provide graphical pictures of data patterns. Two

dimensional data density diagrams were quickly processed and all displayed

in Figures 5, 6, and 7. The concept of the data density diagram is simply that

the area under the curve will integrate to a value of 1, and most of the activity

of interest occurs in regions where the curve is highest. In keeping with this

principle, Figure 5 shows that the vast majority of satellite activity within

3000 nautical miles of earth. Figures 6 and 7 are similar; they depict

NAVSPASUR data density as functions of different variables. Figure 6

shows that the aperature for the vast majority of tracking data falls between 55

degrees West longitude and 143 degrees West longitude. Figure 7 shows that

most satellites range between .003 m2 RCS and 8.7 m 2 RCS. Fitted

multivariate detection prediction models will be most accurate over these

high density domains of satellite activity.

Statistical characteristics of variables in these data density diagrams can be

found in Appendix A. This information can be used to determine the

parameter ranges under which fence detection performance was most

frequently tested.
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Figure 7. Data Density as a Function of Radar Cross Section

B. DETECTION ANALYSIS

effects of longitude and altitude on probability of satellite detection. We were

then able to create a three dimensional graphics depiction of R(x), the

probability of satellite detection, as a function of these two variables. We

were able to approximate calculations of the logistic regression relationship of

detections and nondetections using GRAFSTAT. The resultant probability of

• detection graphics will be shown to correlate closely with the formal logistic

regression results.

1. Satellites of I M2 RCS: Entire System

In a first run of the Grafstat package, satellites of radar cross sections

Sranging from .5 m2 to 1.5m2- were considered. The relative frequency with

which the fence provides at least one receiver detection for each predicted
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fence penetration of this satellite group was calculated. The specific APL

coding required for this run is shown in Appendix B. Figure 8 is a surface

plot of the probability of detection function estimated for this group, ignoring

inclination. Figure 9 is the contour plot for the same function. In this

example it can easily be seen that sensor performance is best near the

geographic center of the fence and begins to fall off with increasing altitude

and off center longitude penetration.

Probability of Detection for 1 Sq M Satellites
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Figure 8. Surface Plot of Detection Performance
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Figure 9. Contour Plot of Detection Performance

2. Satellites of I M 2 RCS: Individual Stations

In order to analyze the fence performance and the performance

contribution of each of the individual receiver stations, analyses was

completed for each station except for Elephant Butte, which was off line for

maintainence throughout 24 April, 1991. Beginning with Figure 10, the

surface and contour plots of estimated approximate detection performance for

San Diego, Red River, Silver Lake, Hawkinsville, and Tattnall are presented.

These plots show several aspects of the NAVSPASUR data set. Firstly, it can

be noted that detection performance for each station is at a maximum directly

over the respective station. For example, San Diego's performance appears

best at 117 degrees west longitude, almost directly overhead the receiver. Also
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note that the estimated probability of detection surface plots for the

individual stations show performance inferior to that of the fence taken as a

whole, an indication of the benefit of the complementary nature of fence

performance. Finally, the fact that independent analyses of data for five

different stations gave similar and intuitively expected results suggests the

statistical methods and the data set used in this preliminary analysis were

consistent.

Probability of Detection foe Son Diego
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Figure 10. Surface Plot for San Diego
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Probability of Detection for Silver Lake
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Figure 15. Contour Plot for Silver Lake
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V. LOGIS1iC REGRESSION ANALYSIS

A. MODELING CONSIDERATIONS

Initial probability of detection modelling was completed in a largely

automated fashion through the use of the SAS statistical package. Input setup

included data editing and setting proper input variable relationships. Data

editing included the setting of gates deemed appropriate in order to create a

model more tuned to the large majority of NAVSPASUR data. Specifically, a

gate was applied to take into account only the central 95% of the recorded

data as discussed in the exploratory analysis portion of the analysis. While

this eliminates some interesting extreme values in the data set, it should

provide smoother and more accurate modelling of fence performance for

regimes of greatest interest. The second important aspect of properly setting

up the SAS package involves development of reasonable independent

variables, based on scientific attributes and relationships. References 3 and 4

discuss the radiative properties of fence energy, suggesting that polynomial

values might best model the input variables. The variables included in our

model are assumed to have the following relationship:

g(x) = 13o + [31(ALT) + [32(ALT) 2 + 03(RCS) + 034(LONG) + P35(LONG) 2

+ 036(ARCCOSINC)

where,

ALT - Satellite altitude in nautical miles

RCS = Satellite radar cross section in square meters
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LONG = Satellite longitude in degrees west

ARCCOSINC = Arcosine of satellite orbital inclination in radians

The maximum likelihood estimate of 5 determined through logistic

regression, given this assumed relationship, was:

Parameter Estimate Value p-Value

50 -19.99357495 0.0000

01 0.00100492 0.0000

32 -0.00000024 0.0001

53 0.39842267 0.0000

04 0.38942569 0.0000

55 -0.00196066 0.0000

56 -0.17300374 0.0148

The following section details how the 1 coeffecients are used to derive a

probability of detection value for a hypothetical target satellite. Additionally,

it is of value to note that the p-values associated with each of the

coeffecients are very small, indicative of the fact that the model properly

incorporates each of the given variables. As a final indicator of the quality of

the model, SAS provides a classification table, replicated on the following

page. The table is fairly self-explanatory, comparing the numbers of satellites

for which the model predicts a .5 or higher probabilty of detection, and those

that are actually detected. Conversely, numbers of satellites with a low

probability of detection and those that are not actually detected are compared.

As can be seen, this rough indicator of model performance indicates a

successful prediction rate of 73.5%.
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CLASSIFICATION TABLE

Predicted

Negative Positive Total

Negative 19862 3499 23361

True

Positive 5270 4444 9714

TOTAL 25132 7943 33075

B. PROBABILITY OF DETECTION EXAMPLE

A computational example is now given in order to demonstrate how the

fitted logistic regression model can be used to estimate NAVSPASUR

detection performance. Suppose it is desired to calculate the probability of

detecting a new threat satellite with the following parameters at fence

penetration:

RCS = 1 m2

INCLINATION = 60 degrees = 1.047 radians

ALTITUDE = 2000 nautical miles

LONGITUDE = 90 degrees west

These satellite parameters may be entered into the fitted g(x) equation,

giving:

g(x) = -19.99357495 + 0.00100492(2000) - 0.00000024(2000)2 +

0.39842267(1) + 0.38942569(90) - 0.00196066(90)2 -

0.17300374(1.047)

- 0.440439
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The probability the NAVSPASUR fence would detect this particular

satellite pass is obtained by entering the calculated g(x) value into the inverse

logit equation, as below:

n~) explg(x)]
= 1 + exp[g(x)]

exp[.440439]

1 + exp[.440439]

= .6084

Thus the model gives a predicted probability of approximately .61 that a

satellite with the characteristics listed above will be detected in a single pass

through the NAVSPASUR fence. A particularly encouraging note about this

result is that the exploratory GRAFSTAT analysis portion of this study

yielded a similar, appoximately .60, probability of detection for a satellite with

similar detection parameters. Figure 20 is an illustration of the estimated

probability of detection for a satellite with the radar cross section and

inclination of the example satellite, calculated over a range of fence crossing

longitudes and altitudes.
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Figure 20. Logistic Regression Model Surface
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VI. CONCLUSIONS AND AREAS FOR FURTHER STUDY

From the commencement of this study it was evident that the

voluminous amount of data provided by NAVSPASUR would have to be

handled in an efficient and highly automated fashion. The GRAFSTAT and

SAS programs proved highly effective in meeting this task once the data set

had been properly formatted and stored on the NPS Mainframe Computer.

GRAFSTAT provided concise graphics, clearly illustrating important trends

in the data. This was instrumental in providing the background necessary to

then develop our logistic regression model with the SAS program. Several

indicators point to the accuracy of our fitted probability of detection model.

Both our graphical and logistic regression results correlate closely with each

other as well as with the previous work completed by Mr. Robin Smith of

NAVSPASUR. Also, it is apparent from the coefficients and general behavior

of our model that the logistic regression model closely agrees with the

physical theory involved with the fence. For example, from examining the

model it is apparent that positive factors such as increasing a satellites' radar

cross section will significantly increase its probability of detection, a point

illustrated in the theory section of chapter II.

Some areas of this research merit further research. Analysis of

additional observation periods would certainly be desirable in order to insure

that 24 April 1991 was not a day of pevforrnance anomaly on the part of the

fence. Additionally, researchers with a strong background in software design

might provide an automated system for use by NAVSPASUR to continually

update its' level of detection performance. Finally, additional study of this
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nature should be conducted upon completion of planned fence

improvements such as the out of plane station program and software

modifications.
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APPENDIX A. SUMMARY STATISTICS

The following tables consist of summary statistics with regards to the data

density diagrams of Chapter IV. Of particular note in the tables is the fact that

the number of data elements varies slightly for altitude and radar cross

section. An altitud-. gate was set at 3000 nautical miles in the data exploration

section. It can be seen that this restriction caused minimal (less than 1500)

reduction in the number of elements. A similar tactic was employed with

radar cross section. As discussed in the main body of the thesis, these

decisions were made in order to minimize the model degrading affect of far

outlying data points.

1. Summary Statistics for Altitude

No. of elements 35753
Mean 1164
Std. deviation 567.28
Skewness 2.6784
Kurtosis 13.824
5th-Percentile 575.96
95th-percentile 1963.3
Median 997.6

II. Summary Statistics for Longitude

No. of elements 37181
Mean 99.268
Std. deviation 28.903
Skewness 0.0160
Kurtosis 2.119
5th-Percentile 55.71
95th-percentile 142.98
Median 99.4

37



Ill. Summary Statistics for Radar Cross Section

No. of elements 36866
Mean 1.449
Std. deviation 3.013
Skewness 2.869
Kurtosis 11.561
5th-Percentile 0.003
95th-percentile 8.700
P .dfa, 0.113
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APPENDIX B. APL CODING

As briefly discussed earlier in the thesis, some new routines were

constructed with Prof. Peter Lewis to enabie Grafstat to properly manipulate

the NAVSPASUR data base. These various functions are coded in APL (A

Programming Language), and are used to edit, and manipulate data desired

when analyzing particular detection parameters. The ROWSTRIP routine

was written to allow the stripping of satellite events with the specified

characteristics from the data base. For example, this routine was used to select

satellite records with certain cross sectional dimensions. Another routine,

NCTABSLL, was used to tabularize groups of satellite events. For example,

this routine can be used to display the observed number of events with

altitudes between 100 and 3100 nautical miles, in 30 bins of 100 miles each.

Finally, the routine PROBMATRIX, performs an approximate logistic

regression with certain independent variables. Coding sequences for selected

GRAFSTAT functions are shown below.

A. SATELLITES OF 1 M2 RCS

In this short coding sequence SELl becomes the matrix of 1 m2 satellites

that are detected. SELMB becomes those that are only predicted (detected or

not detected). Detect/ No Detect information is contained in fields 4 through

9, one field for each NAVSPASUR receiver. Q21 and Q31 become the

altitudes and longitudes of those satellites, respectively, that are detected.

Q21B and Q31B are the same values for all satellites in the radar cross section

group that are predicted to be seen. TAB1 and TABIB enter numbers of
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detections and predictions into the appropriate bin. PROBMATRIX then

utilizes all of this sorted data to calculate a probability of detection for each

respective bin. Similar coding sequences follow for each of the individual

receiver sites.

SEL1<-(QI =1.5) & (Q1=0.5) & (Q4 thru Q9 are at least = 2)

SELlB<-(Q1 < =1.5) & (Q=0.5)

Q21<-Q2 ROWSTRIP SELl

Q31<-Q3 ROWSTRIP SELl

Q21B<-Q2 ROWSTRIP SEL1B

Q31B<-Q3 ROWSTRIP SEL1B

TAB1<- (60 160 20) (100 3100 30) NCTABSLL Q31 Q21

TAB1B<- (60 160 20) (100 3100 30)NCTABSLL Q31B Q21B

PROBI<-TABIB PROBMATIX TAB1

B. SATELLITES OF 1 M2 RCS: INDIVIDUAL STATIONS

1. San Diego

In this coding sequence and those that follow, The Detect/No Detect

results of only the station in question are queried. As before, SELISD

becomes the matrix of 1 m2 satellites that are detected. SEL1SDB becomes

those that are only predicted (detected or not detected). Detect/ No Detect

information is contained in field 4 for the San Diego receiver. Q21SD and

Q31SD become the altitudes and longitudes of those satellites, respectively,

that are detected. Q21SDB and Q31SDB are the same values for all satellites in

the radar cross section group that are predicted to be seen. TABISD and

TAB1SDB enter numbers of detections and predictions into the appropriate
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' bin. PROBMATRIX then utilizes all of this sorted data to calculate a

probability of detection for each respective bin.

SEL SD<-(Q1 !5 -1.5) & (QI=0.5) & (Q4 at least = 2)

SELlSDB<-(Ql 5 -1.5) & (Q=0.5) & (Q4 at least = 1)

Q21SD<-Q2 ROWSTRIP SELISD

Q31SD<-Q3 ROWSTRIP SEL1SD

Q21SDB<-Q2 ROWSTRIP SEL1SDB

Q31SDB<-Q3 ROWSTRIP SELISDB

TABISD<- (60 160 20) (100 3100 30) NCTABSLL Q31SD Q21SD

TABISDB<- (60 160 20) (100 3100 30) NCTABSLL Q31SDB Q21SDB

PROB1SD<-TABISDB PROBMATIX TAB1SD

2. Red River

SEL1RR<-(QI < =1.5) & (Ql=0.5) & (Q6 at least =2)

SEL1RRB<-(QI < =1.5) & (Q=0.5) & (Q6 at least =1)

Q21RR<-Q2 ROWSTRIP SELIRR

Q31RR<-Q3 ROWSTRIP SEL1RR

Q21RRB<-Q2 ROWSTRIP SELIRRB

Q31RRB<-Q3 ROWSTRIP SEL1RRB

TABIRR<- (60 160 20) (100 3100 30) NCTABSLL Q31RR Q21RR

TABIRRB<- (60 160 20) (100 3100 30)NCTABSLL Q31RRB Q21RRB

PROB1RR<-TABIRRB PROBMATIX TABIRR
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3. Silver Lake

SELISL<-(QlI - 1.5) & (Q1I=0.5) & (Q7 at least -2)

SELISLB<-(QI g -1.5) & (Q=0.5) & (Q7 at least -1)

Q21SL<-Q2 ROWSTRIP SELISL

Q31SL<-Q3 ROWSTRIP SELISL

Q21SLB<-Q2 ROWSTRIP SELISLB

Q31SLB<-Q3 ROWSTRIP SEL1SLB

TABlSL<- (60 160 20) (100 3100 30) NCTABSLL Q31SL Q21SL

TABISLB<- (60 160 20) (100 3100 30)NCTABSLL Q31SLB Q21SLB

PROBlSL<-TABISLB PROBMATIX TAB1SL

4. Hawkinsville

SEL1H<-(Q1 • =1.5) & (Q1=0.5) & (Q8 at least =2)

SELl HB<-(Ql 9 =1.5) & (Q=0.5) & (Q8 at least =1)

Q21H<-Q2 ROWSTRIP SELIH

Q31<-Q3 ROWSTRIP SELIH

Q21HB<-Q2 ROWSTRIP SELIHB

Q31HB<-Q3 ROWSTRII' SELIHB

TABIH<- (60 160 20) (100 3100 30) NCTABSLL Q31H Q21H

TABI HB<- (60 160 20) (100 3100 30) NCTABSLL Q311-IB Q21IHB

PROBIH<-TABlHB PROBMATIX TABIH

5. Tattnal

SELlT<-(Q1 5 =1.5) & (Q1I=0.5) & (Q9 at least = 2)

SELITB<-(QI: •=1.5) & (Q=0.5) & (Q9 at least = 1)
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Q2IT<-Q2 ROWSTRIP SELIT

Q3IT<-Q3 ROWSTRIP SELIT

Q21TB<-Q2 ROWSTRIP SELITB

Q3ITB<-Q3 ROWSTRIP SELITB

TABIT<- (60 160 20) (100 3100 30) NCTABSLL Q31T Q21T

TABlTB<- (60 160 20) (100 3100 30) NCTABSLL Q31TB Q21TB

PROBIT<-TABITB PROBMATIX TABIT

43



LIST OF REFERENCES

1. Andrews, M. D. and Shaffer, D. B., Coherent Combination of Signals from
Multiple Receiving Sites of NAVSPASUR, Interferometrics Inc., April 12,
1988.

2. Andrews, M. D. and Wadiak, J. E., NAVSPASUR System Performance
Analysis, Interferometrics, Inc., 14 June 1988.

3. Chaney, G. H., Radar Study Working Papers, Dahlgren, Va. 1990.

4. Berg, S. L., Theoretical Radiation Patterns Of NAVSPASUR Transmitter
Antennas, Interferometrics Inc., 30 November 1988.

5. Hosmer, D. W. and Lemeshow, S., Applied Logistic Regression, Wiley &
Sons, New York, 1989.

6. Knowles, S. H., Possible Major Improvements to a Fence-Type Radar
System, Naval Research Laboratory, Washington, DC, 1984.

7. Meyers, R. H. and Walpole, R. E., Probability and Statistics for Engineers
and Scientists, MacMillan Publishing Company, New York, 1989.

8. Silverman, I., San Diego Sky Temperature Experiment, Naval Research
Laboratory, Washington, DC, 1984.

9. Soloman, D., NAVSPASUR Direction Cosine Processing, Interferometrics
Inc., 30 August 1990.

10. Welch, P. D., Grafstat Primer, IBM Research, Yorktown Heights, New
York, 1990.

11. NAVSPASUR System Orientation Handbook, v. I, 01 July 1976.

44



INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5100

3. Professor Donald R. Barr Code MA/Ba 2
Naval Postgraduate School
Monterey, California 93943-5000

4. Professor Dan C. Boger Code AS/Bo 1
Naval Postgraduate School
Monterey, California 93943-5000

5. Professor Peter A. W. Lewis Code OR/Lw 1
Naval Postgraduate School
Monterey, California 93943-5000

6. Naval Space Surveillance Center 1
80 Department
Dahlgren, Virginia 22448-5180

45


